AD-A121 318 IHPLEMENTRTXON OF THE VGH GRRPHICS SVSTEH ON
PDP-11/58 UNDER THE RSX-.. (U> NAVAL POSTGRRDURTE SCHooL
HONTEREV CA P M COMI JUN 82

UNCLASSIFIED . F/G 972

e QPR i)

o
Fi

¥or 7.0
-

g |

Q
AR

LA TR a i - (A paRl M-S a1y S

.......

|||||_—'§'-
[s s

FEERER
| -]

N

(<)

MICROCOPY RESOLUTION TEST CHART
HATIONAL BUAEAU OF STANDAROS - (963 ~ A

—————— 4

e Ll

D T TR ————— - M

NAVAL POSTGRADUATE SGHOOL .~

Monterey, Galifornia

ADA121918
1

THESIS

Implementation of the VGM Graphics System

on the PDP-11/50 Under the RSX-11M Operating
System and Construction of a Compatible
Software Driver for the Ramtek RM-9400

by
Patrick Michael Comi

June, 1982

Thesis Advisor: G. A. Rahe
SRS

Approved for public release, distribution unlimited

S
Q.
3
Ly
—d
(i

82 11 80 070

SECUMTY CLASSIFICATION OF THIS PAGE (Than Bae Entered)

REPORT DOCUMENTATION PAGE BEPOEE o B
ADIA 19
- 4. TITLE fand uumo! $. TYPE OF REPORTY
Implementation of the VGM Graphics System Master's T?ﬁe;;?“ covenee

a
on the PDP-11/50 Under t RS%- M
: 1n§ gystem gnc/l gonstruct}i‘gn o ;ICog S‘E“i‘ﬁ

Software Driver for the Ramtex RM-9400

T A TRoR T EONTRACY OR GRANTY We
*Batrick Michael Comi §. ConTRATY OA GAANT wumBER(s)

June, 1982

. PEAFORMING ORG. AEPOAT NUMBER

hi. PERFORMING ommiﬁm WAME AND AOONESS 0. PROGRAM CLEMENT, PROJECT Task 1
AREA & WORK UNIT NUSEE ST " | 5K

Naval Postgraduate School
Monterey, California 93940

11. CONTROLLING OFFICE NANE AND ADORESS 12. REPOAT DATE

Naval Postgraduate School June, 1982
Monterey, California 93940 '3 WNeER oF PadEs

P T -

. MOMNI e (1] [] L] 10 ditfosant vom Cantraliing Office) .. SECURITY CLASS. (ef thie rdpere)
UNCLASSIFIED
: ‘Wﬁm
:t e BiiTaauTion STATERENT (ol #is Repert)
1 Approved for public release, distribution unlimited
k.

17. DISTRIBUTION STATEMENT (of the ebetrost entered in Block 20, i1 different em Repert)

[t
10. SUPPLEMENTARY NOTES

e P ———————— v
19. KLY WORDS (Continus en roveree side i nossccary and (dentify by bloek number)

Computer graphics, CORE graphics system, graphics standardizati
- -] ’ on
graphics program portability, Virtual Graphics Machine ’

ABYRAGY ¢ an reverse side it aoecceary and 16eniily by diesk mambes) .

'Tn.bﬁ tﬂe ACM Special Interest Group for Graphics (SIGGRAPH)
formed the Graphics Standards Plannin Committee (GSPC) to develop
a standard for the industry. The result of their efforts was the
CORE graphics system. This study discusses that system and the

: issues involved in its creation. It describes Bell Northern Re-
search's §%ﬂioach to implementing CORE with their Virtual Graphics

a

yﬁghiggtg ion of VGM at the Naval Postgraduate School on a PDP
11/50 with the RSX-11M operating system is described as well as th

|
’,
.
S
r
»

§ DD ,"S%%, 1473 cormion oF 1 OV 68 18 OBSOLETE

! /n oleaarenemly TR S ARIEATIEn o7 o Saat (W Base Bseres

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Implementation of tane VGM Grapaics System on the PDP 11/%50
Under the RSX-11M Operating System and Comnstruction of a
Compatidle Software Driver for the Ramtex RM-94¢0

by

Patrick M. Comi
Lieutenant, United States Navy
B.S., Uaion College, 197¢

Sudbmitted in partial fulfillment of the
rsquirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

-

from the
- NAVAL POSTGRADUATE SCHOOL
- June 1982 %
"‘:.3 Autnor: %//%@
{ Approved by:__ 3' B) (’ Ae, o
4 '/ /I’ nesis Advisor
r:_'.' - . 24 ‘ /, # f L o N -
- = /’V/ g Second Reader
5 .
r' Chairmany Deparsmeht _of Computer Science
S W Lo P2
- Dean of Information and Policy Sciences
o
o
.
2
5
A
4
o L

ABSTRACT

“"\‘”%> In 1977 the ACM Special Interest Group for Graphics
(SIGGRAPH) formed the Graphics Standards Plaanning Committee'
(GSPC) to develop a standard for the industry. The result of
their efforts was tne CORE grapaics system. This study
discusses that system and the issues involved 1in 1ts
creation. It describes Bell Nortaern Researcn’s approaca to
implementine CORE with their Virtual Graphics Machine (VGM).

The installation of VGM at the Naval Postgraduate
School on a PDP 11/50 with the RSX-11M operating system {is
described as wvell as the initial efforts to expand it to

drive the Ramtex RM-940Q Graphics Display System. -§f4~'

T —

I.
II.

III.

Iv,

TABLE OF CONTENTS

INTRODUCTION o.cuvovnocanccoscoonscasscassscscosnnans
HISTORY cocececccccnsoancasoacacccnsnnsassossasccncas
A. THE PROBLEM OF NON-STANDARDIZED GRAPHICS SYSTEMS.
B. PORMATION OF THE GSPC ...cucevcocescnsccscscscane
ISSUBS CONSIDERED IN CORE DBSIGN cococeccccsossccanons
A. FORMAT OF CORE ...vovecccncscccsccsssasascccscnaas
B. DEGREBS OF PORTABILITY ...cceccescosnacssssccccane
C. SCOPE OF CORE .ovceovoccccovocnsasssacasccasaconss
D. YIEWING SYSTEM CONCEPTUAL MODELcccocecccnos
B. GRAPHICAL DATA STRUCTURE ccccccvvcosnncccncscsccns
Fo ATTRIBUTES .ccvceccncenncsaccascscnassosnssnaacans
G. TWO AND THREE DIMENSIONAL GRAPHICS ..cceecccccense
H. VIEWING TRANSPORMATIONS .cccacccccoccccccsssscacns
I. LEVELS OF CORE +vececcconascocacocssoccscosassaons
CORE SYSTEM DESCRIPTION ..ucvceevscccconnscsscnnnacas
A. OVERVIBW ...cveocvcoacccnesasssasasassasosccccnnns
B. OUTPUT PRIMITIVE FPUNCTIONS ..cccovecoscasscnccccas
Co SEGMBNTS cvceecoocnssoscscconccssossssscascssccnce
Do ATTRIBUTES .occcvcerocsascccconcssssocsasscascsnce
E. VIBVING TRANSFORMATIONS .eocccoacsscsccscscnnnaasns
F. INPUT PRIMITIVES .ccvecccccccccsscnsonsscsccaconce
G. LEVELS OF CORE ...covesvsccscscacncncassasccnannans
H. BNVORONMENT INTERFACE PROBLEMS cceeeccoccncacconns

7

10
10
12
15
15
16
17
18
19
21
22
23
2%
26
26
28
29
30
32
33
3¢
36

LA Cae e SEn oath omus culn Serth ek can s e omdl oA st ey aeeus ot aell AL gl ES T o T g S M Sl St it Sangh Sk sl)

¥. THE YGM APPROACH T0O CORB cccccceccccccococsccscsccces 38
A. PUNCTIONAL DIPFERENCES .cccceccocccccsccsssccccsce S

1. Segmentation ...ccccecscecscccssccccccccccccce 48

2. ATTPIDUTES .cccvccocvecscccccccccsssscccsasonee 4P

3. The Vievwine SUPLACE cccccccssccccsevcnccccccce 42

4., Coordinate SYSTemS .cceccccovccccccccccsccsccs 43

5. TransformationsS .cccccccccccccccsscscscscccsoce 43
6. Text ManipulationS .cccccocesccesssosscssscascs 4¢
3 e FISIDLLITY cceevcocccnvccncscssccscasccanccses 46
B. CORE FUNCTIONS NOT IMPLEMENTED BY VGM ...ccccceese 46

C. PUNCTIONS IMPLEMENTED BY VGM NOT IN CORB
s"clrrc‘!!o“ S0 O 0O OGPPSO OOPSOIOOPSIEOEOOSIOSOIOEOSEOSIEBSILOSLBSLEOYEPOTOEDN OO 47

DA G AU MO U

’u: 1. P’l”iti'es 0000 000000 0000000 BSOS SIEEOLNOOEINOLEILIOES PO 47

2. ‘t‘rintes 00 09 6000080000000 0000PCROIOSNEOIOSILOOSEOESBIPBRETDOLIDOS *7

3. Other TEATUPES .cccccccccccccccsccscccccsccccs 48

D. BQUIVALENT FUNCTIONS VWITH DIFFERENT NAMBS 49

VI. THE VGM DRVICE DRIVBR .ccccccccccccccccvsccscccsccccss 38

A. DEVICE CHARACTERISTICS TABLE cccccccccccccccocccns 50

B. STREAM INFORMATION TABLB;.................... 56

C. RON TIME INPORMATION TABLE .ccccccccccccscscccscce 51

. D. ROUTINES BXECUTING VGM PRIMITIVES .cccceccceccccss 51

E B. DEVICE INDEPENDENT LIBRARY OF SHARABLE ROUTINES .. 51
: P. DEVICE INDEPENDENT ROUTINES GENERATING INSTROUOCTION

con” 00 000 000000000000 0000000000000 000000c0s0t00O0e 52

VII. RESUL?S AND SUGGRSTIONS TOR PUTURE STUDY ccoccecscecee 54
‘. son"l‘ 0 0900000 OCEOPSORIT OO TIEOOOD IO OESOESSSETESTOSDS 5‘

-'-'vT-':'T'.'. e - n"- LS

P Lt gL

T TS STVIRRY
(1]

A o o g

Caniiaty S S e RO

'. con’ "‘Lu‘r!o“ O 000 600000000 00005 OO OO0 ONHOOESEENOSODS
1. Port‘ulit’ 00 OG00SO DOONOOOOSEODOIOOINOSOOSESINBSOILOIOEOOSEPSPOSOTPOSIOS

2. Implementation EBffOPt ccccecccccccccccccccccce

S. Device CaApabLility ccccececccccccsccocsccscsces

4., CORE Capabdility cccccsccccscocscssssscscccesss
C. OUTLINE OF CONTINUING DEVELOPMENT OF THE NPS

s!sr‘" L3 X3 K B B B B BN BN N BN BE BE B BN R B BN B BN BB N OR BB BN B BN BU B B BN BN BN BN BN N BN AN J

1. 'c" @ 00 0 000 00 000 008 0080008000000 0os e s sese e
2. De'lce Drivers ® 0 6 000000 00000000 0NN OO OEOEN SRS
3. ?ort!bilit, Q000 0000000 0000008000 GOOPSSEPOSESEONSEISIOSTESOYNS

APPENDIX A. IMPLEMENTATION OF VGM AT THE NAVAL
Posrcnnu‘rz scnooL ® e 0 800000 50000008 S0e OG0

APPENDIX B. CONSTRUCTION OF A DEVICE DRIVER FOR THE RAMTIEXK

ln**” 00 00O 00O 00O D OO OO OO OOCR OSSOSO OEOSONSOSEOSESINDOSESETS PSS

‘PP'“DII c. PnoGuM"I“G 'I,n 'G" 5 6 8 00000 080000800000 s0e 00
BIBLIOGRAP“ © 0 Q0O 00 0 06000 000 0 C0 00O PO P0IBT QOO0 IGCPOEOEPLOEPRSOSEOIONENTO®TCOON
I“IrIAL nIs“IBUTIo“ LIST G0 00 0 0000 S0 OO0 O OSO C O S0 OOCSOOSE TS PO

5%
55
56
s7
57

s7
58
58
59

61

67
8o
86
e7

Ot aaira-4 4

O PTY VW T TIR T

LA i Gk Aok ML e S g

I. INTRODUCTION

Computer graphics is a relatively young tecanology and
is expanding at an extremely rapid rate. As a recognized
discipline, it marks its birta with Ivan E. Sutherland’s
SKETCHPAD, 1in 1962. As the field has expanded, hardware has
developed alonz several differeat 1lines. The availabdle
devices range from computer driven mechanical pen and 1iank
and photosraphic film plotters, to refresh display devices
wvhere digital stored images are repeatedly painted on a
television-like Cathode Ray Tude (CR?). There are also
storage tudbe displays wnere the CRT {tself retains the
image, theredy eliminating the need for sStorage and
continuous refresaing. The latest development nas bdeen the
raster—-scan devices where a matrix of intensity values 1is
output to a refresa type CRT.

The softvare supporting tneseA various devices has
developed along lines as diverse as the nardvare. Despite
wide variation ia device capadilities there is a larse DVdody
of graphaics methodology that 1is common to all display
systems. The existence of this body of shared technology
has contridbuted significantly to the movement toward tae
development of a softvare system that would bde common

throughout the community of sraphics programmers.

. R
PRSI A WAV ST LI WD

T T P W W e —— T ——

The concept of a standardized graphics system is not a
ney one. The pudlication of the ACM-SIGGRAPH Graphics
Standards Planning Committee (GSPC) report in 1977, howvever,
vas the first widely accepted effort in the area of
standardization. This CORE graphics system is, as yet, only
a proposal. CORE is envisioned by the GSPC to be a first
step tovard a true, industry-wvide standard. The hope for the
current CORE system 1is that it will de implemented at a
large numbder of computer graphics installations and Dbde
sudjected to a variety of applications. Such videspread use
of CORE {s the bdest wvay to fully challenge the proposed
standard. Extensive use of the system will »bduild a
comprehensive body of knowledge abdout 1t and should

hignlight 1its strengtas and weaknesses., Based on such

experience the system can be revised and restructured as
necessary until ultimately it is accepted as a viabdle
industry-vide standard.

This project is intended to de an initial step toward a
thorough study of tne CORE grapnics system at the Naval

Posteraduate School. The long term goal of the research is

to implemeat the GSPC proposed system on tane grapaics
E facility at the Naval Posteraduate School and critically
examine its performance,

- vhen this research was begun, exposure to CORE at the
Naval Postgraduate Scpool wvas limited to tae information

. availabdle in the 1literature. No version of ({t vas

h L)
e

operational at the facility. It wvas expected that the

progress of the work would be slov while experience with
CORE wvas bdeing accumulated. Since this study vas the initial
step, the emphasis vas placed on producing a good foundation
for work that would follow.

Naturally, the first step in the study of CORE was to
implement a version of it. The PDP-11/50 computer and RSX-
11M operatinz system vere the target environment for this
phase, The CORE softwvare was Bell Nortaern Researca’s
virtgal Graphics Machine (VGM), which was donated by that
company to the Naval Postgraduate School for research
purposes. A detailed report on the system installation is
presented ia Appendizx A.

An intermediate goal of the project is to extend the
nevly installed CORE system to a variety of devices. Toward
this end the 1initial steps vere taken to 1incorporate an
interface with the Ramtex RM-9400 graphics display system
into the CORE software. Appendix B describdes this portion of
the research.

As part of bduilding a knovliedge Dbase for later
researca, tne CORE system and 1ts development are discussed
in detail. The discussion is intended to give enoust ot an
overviewv of the system so that tae reader vill not need to
refer to the source documents except for essential detalls.
An examination of the relationsaip betveen YGM

implementation and tae CORE specification is also provided.

P— PSR TSI AT T Sy

I R S W Yy

I1. HISTORX

i | A, THE PROBLEM OF NON-STANDARDIZED GRAPHICS SYSTEMS

c Until the mid 1970°s individual graphics devices vere
operated witn taelir own speclalized softvare systems and
their instruction sets wvere tailored to their own particular

capabilitcies. Programming techniques generally vere

constrained by the device characteristics. Bven program
structure could bde dictated Dby the available graphics
system. Added to these restrictions would be additional
requirements associated wvith installation computing hardvare
and operating systems. Such highly individualized equipment
meant that each graphics system required specialized
programs, and, in general, these vere applicadle for tnat
installation and no other.

As the field of computer grapaics expanded, such
limitations became a real liadility. The i{nadility to use
one program at more than one installation meant that for a
given application a nev set of software would have to »bde
developed individually for each comdination of hardwvare and

operating system. The issue of non-portabdility eventually

Telol 4 6wt

became an overriding concern of the industry.

Ir the prosrams for particular devices vere

s individualized then so vas the training of the programmers,

Bvery device required users to bhave fairly extensive

10

knowledge of its operation. Rather than concentrate on
erapbics in a broad spectrum, application programmers got
involved in very lowv level, highly detailed programming for
a specific device. This meant that much of the knowvledge and
techniques developed by a programmer migat be unuseable {if
the device vere changed. Thus, a hardware change brougnt
vith it the necessity for an i{n-depth training program on

the new device., Furtaer, the programmer would now have to

keep the operating details of each device separate in his

mind. Confusion of such details is higaly conducive to the

introduction of additional bdugs into programs.

The prospect of working im a very restricted environment
and of bdeing required to assimilate and differentiate a host
E of {diosynchrasies, mnemonics, formats and operational
details no doudt caused many potential graphrics application
proerammers to turn to other fields of specialization. The
F - grapaics industry must count this to its detriment.

Another problem, perhaps not quite as visible as the
portability issues, »bdut certainly as vorthy of concern, was
the 4ifficulty researchers in graphics 2ad in bduilding on
one another’s wvork. An application written, for example, for
a storage tudbe display, wvould have to be completely

revritten for a raster device. The changes would bde so

— APRATal a0 ol o S0 . 4

numerous that equivalence of tne programs vwould be

impossible to assert. Also, the full duplication of a piece

{ ‘ of work simply to adapt it to a different environment was a

11

jrovevey
-y T

MR AR ARt §
e

Arastan Sl Ae

costly process in terms of time and resources, both human

and machine,

B. FORMATION OF THE GSPC

In more recent years, there have been some attempts to
remove tae user from the details of device operation by
providing high level softvare. Tais typically took the form
of a package of subroutines callable from some standard nigh
leve]l language. Such packages did remove the need for
programmer knovledge of some of the device operating details
(though by no means all of them) but each package was still
unique. Thus, thousgh a Step forvard had deen made, prosrams
written from different grapnics packages vere still not
portable.

The next step in tne evolution was to develop grapaics
packages that were still specific for particular graphics
devices but with a standard interface to the user program.
This would allow transportation of user programs unchanged
to installations where the ~standard’ interface was
implemented. This development was moderately successful bdut
by this time, areas of research had grown up around
particular classes of graphics devices. User’s of tne
various classes of devices all had their own idea as to
exactly what form the application program interface should
take, These opinions were vwidely varying and as alwvays, vere

oriented tovard the device capabilities.

12

TR T T T

B EC e R ot AT A Rt D= e R It i i i e

The various schools” of graphics researca eventually
realized that there vere wide areas of agreement in their
conceﬁts of how a user should see a grapanics system. 7Tais
led to the next evolutionary stride, the standardized
graphics package. These types of systems vere desizned so
that not only would the application program/package
interface be fixed, bOdut the functionality of the packarse
itself would be uncnanging. The need for individuvalized
sof tware for each particular device, hewever wvould not bde
removed. This task woeuld bde accomplished by a “device
driver” amd its interface vith the standard package would be
a fixed entity.

The first mneaningful steps tovard a standard graphics
package was the IFIP dWorking Greup 5.2 Graphics
Subcommittee’s VWorksnop on Grapaics Metnodology neld 1in
Seillac, 7TFrance in 1976. Based on experience with existing
machiine and device independent packages like GINO-F and GPGS
the subcommittee laid tne groundwork for tne movement toward
industry wide standardization. Thelir coantridution was to
outline and define tne issues that had to bdbe addressed if a
standard was te bdecome a reality. As already discussed,
their prime concern was tae issue of application program
portability. Toward this end their recommendatioen was that a
study of the sStructure of application programs vas
indispensable, and that the results of such a study vwoulad

drive the Sspecification of a eraphics standard. Another

13

A e e e 2at a4 v ane 4
-— ettt

TN VTN T

outcome of the Seillac meeting was tae assertion that tae
separatien of operatieas cencerzed vwith creating a picture
of an object from those concerned with manipulating tae
object itself was essential. lLastly, the Vorkshop urged tnat
a standard grapaics system specification not stand alone.
Along with the detailed design sheuld Dde included the
methodolosy dehind {ts development.

In 1977 the ACM Special Interest Group for Grapaics
(SIGGRAPH) appointed a Grapanics Standard Planning Committee
te design an industry wide graphics standard. Using the
recommendations of the Seillac Werkshop as a foundation, the
GSPC designed tae CORE graphics system. Their specification
for the system, and the methodelogy that led t0 it, vwere
pudlisned 4in August 1977. An updated version appeared tvo
years later {incoroporating the experience gained {n the

interim and extending CORE to raster devices.

1¢

} RO A
- -

VY -
AR IR S AL NI AP §

Te .3

TR T TR e oS i 3

II1. ISSUES CONSIDERED IN CORE DESIGN

In the early stages of discussion, the Grapaics
Standards Plamning Committee concentrated on clearly
defining their goal. Their obdjective was to design a general
purpese granhics system that would meet the needs of the
majority of esraphaics prosrammers and wvould be sSimple to
install on most existing interactive displays.

It 1S essenttal that such a general purpose sSystem bde
simple. 7This principle was recognized dby tne GSPC and
strictly adhered to. They taregeted their efforts toward the
petential users wita tae 1iatention of promoting well-
structured, compreheasibdle software., Syntaxr was considered a
less complex and secondary design issue. The committee also
sought to put definite Ddounds on the scope of the new
system. The inteation was to provide a system that vwould
offer a wide range of capabilities, _but not at the cost of
losing 1its éppeal as a general purpose tool. Two tradeoffs
that constantly cropped up bdbefore tne GSPC vere simplicity

vS., wide applicadility and proeram portabdbility vs. machine
efficiency.

A. YORMAT OF CORE
The GSPC considered taree approdcaes to development of

the core system. One possidility was to create a complete

18

4 b X e e ay

SR e DM S Ak 2 Rt ik et Sl By vev oV P i g N N T T T——

new graphics language. A sSecond choice vas to take an
existing language and make tne core systém an exteansion of
it. The third approach, and tae one finally settled upon wvas
to bduild a package of grapaics sudbroutines., There are a
number of advantages to the sudbroutine packasze as opposed to
either of the alternatives. The major benefit 1s that 1t
requires no changes to eitaher the language or the compller.
System development, revision, and experimentation will have
no effect on any otaer softvare at tane 1installation. Tae
primary limitation {s that the syntactic Structure {s
extremely limited since thne only choice in tais area is the

approach to parameter passing.

B. DEGREES OF PORTABILITY

The degree of program transportadility as measured Ddy
the type of required changes was droxken down {nto three
general categories:

1) The abdsolutely portadle program which wanen
transferred from one ianstallation to anotaer would require
no changes whatever to the source code. Such programs are
the ultimate goal of any grapaics standard.

2) Programs that require only editorial changes vithout
modification of structure. This class of program would
require adaptation to a2 nev installation in much the same

vay that non-grapaics programs written in a aign level

18

Satt e S Miat Jeie i M —Samast By [Mt i S i~ St S bl IV M LR el oS Ay riadars Ean s St LT e —y——g wa . p——

lanzuage have to be modified vhen they are traansported. The
changes typically are those necessary to adapt to such local

idtosynchrasies as different character sets. These changes
do not require a grapnics programmer or a specialist in tae
particular application. Many of them can even de automated
on & reasonadly good text editor.

3) The 1least portabdle category of programs vwould be
those where changes to the program structure itself are
required. Such changes as naving to create a particular
routine to drav an arc to replace a single command required
by a more powerful device fall into this category. Chanees
of this type may require a detailed knowledge of the
particular installation characteristics; even then they can
be somewhat difficult and have a teandency to bdbe error prone,

Realization of the adsolute portadility goal, was not
expected vwvhen the GSPC publisaed their proposal. The
immediate hope for the CORE system 1s that 1t will
drastically reduce tne number of changes required in an
application program wvhen 1t {s transported. It is

anticipated tnat the "routine” changes of category 2 above

vill bde required in source code dut, as a miepimum, the

structure of the source prosram should remain intact.

: C. SCOPE OFr CORB
. Baving estadlished the form the roposed graphics

standard wvould take, and tane results that could bdbe expected

17

.Yly TeY wr e T W W e VY L 2 YA Thd
» 2
BN

PSS SLT S YT Y

T T TN TIN———

from {t, the committee set abdout defining the scope of the
- project. Recosnizing the Seillac wvorkshop’s wisdom, the GSPC
focused on "vieving® as the essential part of any grapaics
system (its core, Dhence the name) and treated anything not
concerned strictly with displaying ianformation abdout an
object as outside the scope of the standard. 7This is not to

say that such {issues as modelling or grapaic arts vwvere

ignored. The 4{ntent was to desisn a core vieving system
upen waicn tnose functions dealing with adstract odbjects and

relations bdetween them could bdbe built.

D. VIEVING SYSTEM CONCEPTUAL MODEL

Once the scope of their task vas defined, the committee
developed a model that vould adequately represent their
concept of tae viewving sysiem of tne standard. Tahe viewing
systam can bde thouzht of as a syanthetic camera positioned
and oriented in a user defined "world coordinate cystem".
The display on the eutput device would be a “snapshot” of

vhatever wvas in the camera‘s frield.

Such an analogy fit well the rules the GSPC hnad
formalized, The “grapnical vorld”™ was considered ail of tae

graphical data availabdle to the system. What would show up

on the eutput device would de a viev of this world ctarougn
the eye of the synthetic camera. The camera might be adle to

take 1in the entire set of sraphical data or oaly a portion

L of {t, depending on the vieving parameters. To take an

18

LA e) ity
.

imasinary snapshot, the system would have to bde avare of the
camera’s location in space, {ts oriemtation, and tae amount
of a particular obdject it could actually photosraph (i.e.
its clipping volume). Furtaer, at tne instant the snapsinot
is taken, none of the parameters related to the object delne
paotograpaed could cnange. It must de remembered tnat what
is on the screen is only a part of the total information in

the grapaical wvorld.

B. GRAPEICAL DATA STRUCTURE

Besides deciding how to display an obdject in the
graphical vorld the committee had to estadlish the
particular structure to be used to represent grapaical data.
The simplest approach would be te have no structure at all.
Bither all of tne srapnical tata 1s present and fixed or a
nev graphical world will have to be created. Thus, ome could
only dulld or erase an entire odbject. Onc displayed, there
vould be no changes te the grapaical wvorld. sucn an approaca
is very easy to implement and storage is not a major {issue,
since after tne snapsaot is taken, taere is no furtaer need
of the data. Such a system is ideally suited to hard-copy
plotters and similar devices but its drawdack is that it
does not meet the needs of a large portion of grapaics
applications.

Mack of eraphics is concerned vith duildine an obdject

and selectively modifying only parts of it. Tais requires

first, that the gsraphical data not be lost after {t {s
displayed and second, that it be "segmented” in such a way
that individual pieces can bde manipulated. Since there is a
censiderabdle demand for such structuring, the GSPC
incorporated it into their standard proposal. Their concept
is taat grapaical primitives (lipne drawing, text, and marker
placements) be grouped into indivisible and unchangeadle
segments. Taese segmeats are then be comdined to produce an
entire obdject. Thus the picture can bde modified dy pleces
throush the deletion and addition of individual segments.

In the interest of ecomomy and flexidility tne CORE
system also implements a form of tae sSimpler unstructured
option. Por the Ddody of users concerned with storage
efficieacy or having hardcopy displays, it is possidle to
designate segments 4s tQNDOrAry. A temporary segmeant is one
that would senerate graphical output while it is open, Ddut
ence closed tae segment would bde automatically deleted. The
next “nev frame” actionm will cause it to bde lost altosether.
Effectively, while the image is bveing created in the open
temporary segment the sraphics system is unstructured.

Another possidle structuring of sraphical data vould bde
t0 use multi-level units to define tae grapaical wverld. In
such a system, a unit” (analosous to a sesment) would bde a
collection not only of primitives dut also of referemces to

other units. 7This approach was considered by the GSPC to bde

20

VSR SR S,

L o it s afie St maed 4 PR R it ¥ e ——— Ly e—r R Ty T————" WP —_p—

to complex for the bdulk of current grapnhics applications.
There are many variations to its implementation, none are
easily accomplished, and all require a great deal of
bookkeeping overhead since a chanse to one unit may ripple
through several others that reference it. It should be kept
in mind, nowvever, that if such a grapaical structure 1is
desired it 1Is possidle to construct it using tne CORE

system.

P. ATTRIBUTES

With the structure of grapnical data settled upon, the
need arose for defining modifications to the describded
object. Besides the primitive functions already mentioned, a
graphics system must have a means of further descriding
them. For example, a primitive 1like “"line” mignt have

characteristics such as dasned (style), red (color), and

doudle taickness (vidta). Deciding now to imcorporate such
attridutes into CORE wvas another major issue facing GSPC.

Some attributes naturally assoclate themselves with

YTy revgeye
PR S
.

primitives, 1ike line style and width, while others just as

naturally only apply to waole segments, such as viewing

Y

angle or clippine volume. A probdlem arises with attridutes
that are likely to bde needed for Ddota primitives and
segments. Color is a typical example. The abdility to produce
a dravine usine lines of several different colors might Dbde

desirabdle. But if it is desired later in the program to

21

LA AChEMAREARNENGD SIS TRAELREE ARCUC) S LAt Al

AR e
- oo

RNAN

T T ——

change the color of all dravines to say blue, an amdiguity
arises in novw to nandie the multicolored segment.

The GSPC felt that resolution of such ambiguities within
CORE would take avay from the simplicity of their system.
Therefore they established the rule that no attridutes would
be shared. Attridutes would de specific for primitives only
or for segments only. The former would be static’
attribdbutes and bde unchangeadle for a primitive once
declared. Segment attributes, on the other nand would not bde
so restricted. These “dynamic attridbutes wvould Dbe
changeable to meet tne user’s needs at any particular place
ia the program.

The decision as to jJust which attributes would bde static
and wvanick vould bdbe dynamic were dased om two criteria., Tae
first being that primitive attridutes wvould de those thines
that wvould normally bde recorded by a snapshot of a
particular object. Attridutes pertaining to the image as a
whole wvould de segment attributes. The second criteria was
that am attridbute would be dynamic, (Lt.e. a segment
attridbute) only if most medium performance, refresned
display device architectures supported changing the

attridute vith reasonabdle ease and efficlency.

G. TWO AND THREE DIMENSIONAL GRAPHICS
dlone with the questions of graphical data structure,

the issue of nov to treat two-dimensional and tharee-

22

S i s SRS YR Al 4 0B it

el

DR A Rt SR it

dimensional grapnics in a single standard had to be decided.
Initially tne inclusion of taree-dimensional grapanics was in
question since 1t necessarily would add complexity to the
system. It was decided that the need for three~-dimensional
graphics wvas great enough that its exclusion would restrict
the applicability of the standard to an undesiradle desgree.

A more subdbtle question thaa 3D inclusion was whether to
treat 2D grapaics as a subdbset of 3D or to nandle the two as
disjoint sets of operations. The advantagze of disjoint
treatment is taat tne 2D expression would not be
unnecessarily complex since 3D ianformation would not have to
be carried vith tnem., On tne other nand a large portiom of
the system’s routines would have to de duplicated, ome sroup
specialized for 2D manipulation and anotaer for 3D.

The GSPC chose the subset approach in the ianterest of a
unified treatment for all images. To foster simplicity in 2D
graphics, they established that the 2 axis coordinate would
automatically default to that of its last specified value

vaen fitting 2D operations into the 3D format.

H. VIBVING TRANSTORMATIONS

One of the most difficult issues for the GSPC to decide
vas hov to treat vieving transformations of an odject. There
are a large number of approacaes to tais probdlem and all
have a certain amouat of merit, When considering tais

particular question the committee chose to aim ror maximum

23

system generality. Toward this end, they estadblished four
criteria. The first was that any vieving transtormations to
be performed vould ©bde declared before description of a
particular object. No transformations within a Seszment would
be allowed. Secondly, tvo-dimensional transformations would
be upvard compatibdle to three-dimensional ones. Third, all
general planar projections would bde possible to implement.
Fourth, parallel and perspective projections would Dbde
consistent.

In tne discussion of viewing it is necessary to go bdack
to the synthetic camera model. In order to maximize
generality of tae viewing aspect of CORE tne parameters
under investigation vere those concerunine the 1location of
the synthetic camera 1in space and the location of the
viewing plane. The orientation of doth the camera and the
viewving plane must also be considered. It saould be appareat
that the most flexibdle viewing system is the one that allows
any orientation and any location for both the camera and the
viewving ©plane. Restricting the positioning of one or bdoth,
limits the allowvabdle viewing pyramid and results in failure
to meet one or more of the estadblished criteria.

For example, suppose tae viev plane were restricted so
that it must alvays be normal to the direction in which the
camera is aimed. In such a case, oblique perspectives are no

lonser possible, which is a violation the third criterion.

2¢

I. LEVELS OF CORE

One of the final issues to be resolved was the structure
of the CORE standard itself. The question was whether to
establish a single monolithic standard or to allow a number
of “standard subsets” of a parent system. Realizinz that a
very extensive system might be well deyond the needs and/or
resources of many installations, the GSPC settled on a tharee
level structure. The lowest level would be restricted to the
most basic needs of most users, stressine ease ot
implementation as wvell as economy of computing resources,
The upper two levels include more features and a higzher
capapility with correspondingly more difficulty in
implementation. Each upper level of CORB includes all of the

features of the level below it.

A. OVERVIEW

In the previous chapter most of the basic terminology of
CORE has been introduced. In this chapter the system itself
is discussed in detail, but before doing so, more
terminology must be introduced. The information displayed on
the graphics display device is referred to as a picture. The
basic dbuilding bdlocks of pictures are ougput primitives. An
output primitive 4is a line or sequence of lines, & non-~-
draving move of the cursor, a marker placement, or a strine
of text. A numbder of output primitives are grouped togetaer
to form a segment. PEach segment defines a single object and
a combination of one or more odjects defines an jimage. The
vievw of an image camn be thought of as & iwaginesy camera
snapshot of it. To obtain a 3-D projection of an image the
user specifies the imaginary camera position, type of
projection (perspective or parallel) and where on the
display surface the object is to hppear. Different views are
obtained dy "moving” the synthetic camera in space relative

to the stationary obdject. After the view of an imaece 1is

determined the graphics system must map it onto the

Y

particular device selected to show it. The CORE system does
this wusing two coordinate systems. Objects and images are

K] created in a user defined, previously specified dWorld

Coordinate sSystem. Within this coordinate sSystem the part of
the total 1image that is to be displayed is framed bdy a
window. The ¥World Coordinate System is mapped by CORE onto a
set of normalized device coordipates (NDC). NDC
specification defines the vieving area on the selected
grapaics device that will be used. NDC’s are specified as
fractions of tae total available display widtn and heignt.
The window and the visible section of the image in it are
mapped to the correspondine locatioa in the normalized
device coordinates. Once the image is in in terms of the NDC
it is a simple matter for tne CORE system, knowing tne
particular device characteristics, to translate it into a
picture on the screen.

Any graphics system must have & means of controlling 1its
operating Y environment. .In the CORE system this is
accomplisned by:

1) turning clipping on or of?

2) selectine viev surfaces for output

r 3) setting initial values for segment and

? primitive atvributes.

E 4) establishing error handling mechanisms

To support the cbntrol functions the application proeram {s
g given tne capabdility to inquire about tae system status,
variables and device capabilities. There is a "new rrame”
function for screen clearing and a capability for grouping

changes to the picture.

’ 27

Output primitive functions may bde referenced eitaner by
a segment identifier or a special "pick~id” name. The pick-
1d is used in conjunction wita a pick device, which will be
4iscussed later in the chapter.

To allov utilization by tne system of specific nardware
and installation features, there is an escape mecananism. It
is a standard, rigorously coanstrained tunction that allows
the CORE system to taxe advantage of the non-standard
capabilities of its eanvironment. Use of the escape has a
price in that it taxes away from the portability of tne

application program.

B. OOTPUT PRIMITIVE FUNCTIONS

Output primitive functions are tahe operations the
prosrammer uses to descride obdjects in the device=-
independent VWorld Coordinate System. Invocations of these
functions are gathered into Seaments as dravine commands.
Primitives work from the cyrrent positionm (CP), which is a
draving location 1in world coordinates. It 1is simply a

starting point for application of the function, and 1is

initialized to the origin upon sSesment creation.

There are five output primitives: single and multiple

line dravines, text display, and single and multiple marker
placements. These are only sligatly differeat for tae tvo-
and three-dimensional versions. Coordinate positions may de

specified as either relative or adsolute, bdut tne former is

AR DALV I S Tt K

28

MM A O N SR AR A

9
b
e
5

WY (S e i e e e e A e b . L Qe o oy Dy

merely a notational convenience. It does not necessarily
generate a relative positioning command to the hardware. The
concept of a marker in the CORE system 1s simply a
designation of a position in world coordinates. A particular
character appears on the view surface to indicate this
position dbut in world coordinates there is no such
character.

Taree kinds of text are supported by tne CORE system
output primitives: strine precision, character precision
and stroke precision. The main purpose of string precision
text is to supply 1iaformation to the operator. Its
generation is simple and efficient. Character precision text
is used vhen it is important that a character string occupy
a designated space, a plot axis, for example, String and
character precision are also referred to as low and medium
quality text, respectively. Botha medium and lowv quality téxt
output primitives take advantage of bhardware character
generators, 1if availadble. Stroke precision, or nigh quality

text requires a different approach. Here, tne string 1is

treated as if esach line of each character vere generated by

softvare in the CORE system.

C. SEGMENTS

T
}' Segments are created i{n the applications proesram.
- Creation of a segment follows a simple sequence. Tne World
e
- Coordinate System 1s defined and normalized device

29

SEAMA) #™ SETEERTA I

coordinates are specified. If desired, tae syantaetic camera,
discussed earlier, s positioned to establish the viewv of
the object. Next, 4 segment is opeaed” and the object
descrived using the output primitives, After completing the
object description, tne segment must be closed . To modify
a piece of the picture a segment is deleted and a nev one
created to replace it. Segments are of two types: 1)
retajpned., vaica are typically used for buffered displays and
2) gemporary, vhich are most often used by plotters. As one
might infer, temporary segments are used only once to create
a display and then are discarded. Retained segments are kept
by the CORE system until specifically deleted. Temporary
sezments have the advantage of economy of memory
utilization. A segment’s type is estadlisned whem it 1is
created and remains unchaneed for the life of the Segment.
Copying one segment into another or invoking one segment

from another is not permitted under the CORE system.

D, ATTRIBUTES

The effects of output primitives are modified by
assigning attridutes to tnem. For example, the primitive
"1ine” has ap attridute "linestyle” which has values "solid”
and "dashed”. Other attributes that apply to primitives are
color, character size, chnaracter precision, linewidth and

more.

30

Pl 4 gt M i ey

Segments, 1like output primitives, also nave attridbutes.
These control such things as a segment’s visibility,
hignlighting witnin the segment and its detectadility by a
pick device. This last is a particularly important segment
attridbute. #When a segment {S detectable and a pick s
enabled, the device capn select a primitive from the segment
and return to the application program both the sesment name
and the primitive’s pick-id.

Witna the exception of type, segment attributes are all
“"dynamic” in that they may be changed after the segment has
been created. If tne user does not specify attribute values
prior to segment creation, tne CORB system provides a set of
default values.

Segments are assigned attribute values from a table of
current attridute values maintained dy the SsyStem. The
application program has the capability to interrogate and
change attributes. For primitive attridutes chaneges can only
be made while the segment is open; segment attridutes, on
the other hand, may bde changed at any time. A single
attridute cannot apply to doth primitives and segments. If
certain attributes are not supported by hnhardware, the
options are to either simulate taem or force a reference to
am error handling routine., The choice is imstallation
dependent.

Besides segment and primitive, attridutes can be

classified by the “space” 1in wnich they operate. For

31

example, text attribdutes descride tne text regardless or 1ts

location or orientation. They are said to define
cnaracteristics in “object space”, On tne otner nand, iine
attributes such as style and width are related'to views of
objects. Dependine on the location of the synthetic camera
these attridutes of an odject may appear different for the

same value. They are said to operate in the "picture space’.

B. VIEVING TRANSTORMATIONS

A viewing transformation accomplisnes two tasks: 1t
specifies how much of the world coordinate space is visible
and it maps visidle world coordipate pictures 1iato
normalized device coordinates. The viewine <transrormation
takes a world coordinate volume (a clipped portion of a
complete display) and projects it onto a viev plane in world
coordinates defined by a wipdow. The projection 1s then
mapped iato & normalized device coordinate vyiewport, and
finally to the physical device coordinates. The core system
avoids a problem that nas occurred in the past where two-
dimensional objects required different treatment. 2D objects
are treated as a subset of the 3D obdjects. When a 2
component is not specified, a default to the Z component of
the current position is effected. .

¥indow rotation or inclinationm is a common requirement
for many applications. In tae CORE system the concept 1S

implemented using a viev-yp vector. This vector simply

32

ARENIR DAL

— T Y Laass S o anm oy v, N o
SEEASM PN SUSREMY MO RoN L #~ B

AL
-~

——r— Ty

O R e Sl i | 4

[

points to tane “"straigat up direction for the windov wita

respect to the world coordinate orthogonal X, Y, and Z axes.

F. INPUT PRIMITIVES
Six types of input devices are supported by the CORE
system:

PICKS: 1identify an output primitive bdy its segment
name and pick-ia.

LOCATORS: provide world coordinate values for a position
on the view surface.

VALUATORS: provide a scalar value.

KEYBOARDS: provide canaracter strings.

BUTTONS: provide a means of selecting from several
alternatives.

STROKES: provide a series of positions to the
application proeram in normalized device coordinates.

Input for interactive graphics is accomplished through
logical 1input devices. These devices are a speciried
abpstractly in the application program. The program defines
and controls them in a way unaffected by the nardvare. The
CORE system’s task in interactive graphics is to connect
logical input devices to an available piece of hardware that
will accomplisn the desired function. Logical input devices
may be manipulated in the following wvays:

1) Initialization/ termipation |

2) Enabdline/disabdling

33

S ame it it

3) Bvent queueine/ dequeueine

4) Sampling

5) Associating sampled and event causing devices (tnis
ties values provided by sampled devices to events caused by
event-generating devices)

S) Echo control

Logical 1input devices fall into two mutually exclusive
categories. They are either sampled devices or event causine
devices. Stroke, pick, keybdoard and Ddutton are event
generating devices; locator and valuator are sampled
devices. Event-causing devices provide signals to tae
application program. For each event, an event report is
created containine data related to the state of the devize
at the time of tne event. Tne CORE system enters event
reports in an evept gyeue for later use by the applications
program. To get state information about sampled devices, the

application program must query taem. These devices 40 not

generate event reports. A staandard feature of the CORE
3 system 1s to ecno automatically all operator 1interactions

unless this function is specifically deactivated.

G. LEVELS OF CORE

To meet the wide range of installation capabdilities and

ar 4 D AR ALA D e an Sag g

requirements, an upvard compatidle three-level structure ftor

3 the CORE system was selected. Tahe aim was to accomodate wnat

vere considered the most common classes of equipment and

3¢

PP S . & a

applications. Tne most basic level of the CORE system deals
strictly wita output., There is no interactive capability and
the segments are of the temporary type only. This level
consists of the output primitives and tneir attribdbutes,
viewing transformations and device controls.

The next level adds tne ability to retain selected
segments., It still {s limited to output only operation. The
visibility and hignlignting segment attridbutes also are
included. The taird, dynamic level, allows use of the input
capabilities. This 1s the level at wvhich {nteractive
grapaics s supported. It provides all tae functions
intended to make up the complete core system:

1) Output primitives and their attriputes

2) Viewing transformations

3) Device control

4) Temporary and Retained segments and taeir attributes

5) Input primitives

§) Image traasformations

Level taree is further divided according to the
capability for imase transformation:

3A) Two-dimensional translation only

3B) Two-dimensional translation, rotation and scale

3C) Taree-dimensional translation, rotation and scale
AS with all of the levels, these sub=levels are also upwvard

compatible,

38

Complications vwith such a level structure are likely to
arise at {installations wvaere there is a combdbination of
different grapaics devices. Vhat is envisioned for such a
facility 1s a bdody of device indepeandent code 1linked to
iadividual device drivers. The iatent is to share as much of
the independent code as possidle, theredy keeping as much to
the objective of probadility as feasidle.

H. ENVIRONMENT INTERFACE PRODLEMS

Despite 3 great deal of effort to make the CORE system a
stand-alone eatity, operating systems and programming
languages still impact upon it. PFor instance, there is no
staniard wvay to maxke device driver routines availabdle to tae
application when the system is invoked. Methods can vary
videly depending upon computer and operating system
capadbllities. Another prodlem 1s the case where a system
message 1s sSent to a terminal vhere the CORE system has bdeen
invoked. The state of the display may dbe changed without the
system bdeing avare of it. The coansequences of this depend on
the situation, bdut system reliadility will certainly bve
degraied.

There i{s as yet, no definition of a standard 1interface
with programming languages. It 1s hoped that as more insight
and experience is gained, a standard laaguage interface will
be developed and the CORE system will be abdble to bde invoked

from more than one language, adding a nev dimension to 1its

36

P———

portabdility. Iaput/output also has problem potential if the

programming language and the CORE system are operating on

the same device. Resolution of this is still highly language
and device 3lependent.

37

V. THE ¥YGM APPROACH IO CORE

The Virtyai Graphics Macnine (¥GM) is Bell Nortanerna
Research’s implementation of the CORE graphics system. It
vas developed on an IBM 3833 in ANSI standard FORTRAN and
later modified to operate on a PDP-11/78 under the RSIX-11
operating system. VGM is a FORTRAN bdased set of subroutines
with each subroutine corresponding to a CORE primitive
invocation, attridbute setting, or viev transformation. The
package also includes subdroutines for control purpnses, such
as 1initializing devices, opening segmeants and setting up
coordinate systems.

The intended customer market for VGM {s installatioas
with 1low and medium cost intelligent” terminals which are
capadble of generating eraphical output from fairly high
level functions and primitives., Terminals not accepting such
high level {iaput will require 4intermediate software to
eitner simulate the functions or break them down to lowver
level primitives compatidle with the device,

Under RSX-11, VGM exists as a 1lidbrary of FORTRAN
subreutines. To use VGM, tne application program \{is
created 4independently as a main program making calls to the
¥GM 1lidrary. The application source code is taen compiled
independently. The connection wvith VGM is made by the RSI-11

Task Builder. The application object file and the

38

appropriate routines from the VGM library are linked into a
single task by that RSX utility.

Included in the VGM lidrary is the particular subdbroutine
that establishes communication bdbetween VGM and the selected
device. This segment of code has to be created specifically
for the installation wanere YGM is to be implemented. Tais
routine, SELSTR, 1is the only executable code 12 VGM that
interfaces with the device driver. Graphical data is passed
betwveen VGM and the driver via a COMMON dlock of memory.
What SELSTR does is set tae necessary flags to control tae
concurrency bvetween the application task (linked with VGM)
and the selected device driver tasks. Eacan device driver
exists as a separately compiled and linked task. Under RSIX,
before inveking any driver from ¥GM tnese tasks must be
INSTALLed by the user.

In YGM, syntax 1s a very minor issue. Since the parent
language 1is FORTRAN, and the entire system is based on the
subriutine call, the only syntax is the manner in which the
necessary parameters are passed.

It snould bde ewphasized tnat YGM does not implement tae

CORE graphics system exactly as set down in tae 1979 GSPC

report. There are a number of differences, wnict may be

v v
il

grouped inte four gemeral categories.
A. TFUNCTIONAL DIFTERENCES
In this category the end result of a series of

r‘ operations in YGM is the same as that specified dy CORE bdut

39

P W T ———

the mechanism for achieving the result i{s not the one
specified in the propesal.
1. Segmeptation

The CORE system creates a retained Segment or a
temporary segment with a single function specific for the
particular segment type. VGM uses a two—-step process. First,
a Segment type 1s established. After the invocation of the
routine to do tais any segmen* created will take on the type
of the one declared. All segments created will be of the
same type until a new type is declared.

Retained segments ir VGM are stored in Transformed

Display Piles (TDF’s). The TDFP contains graphical
information ¢that 1s ready to be translated into a device

compatidle format. All clipping and ctransformation has been
done Ybefore the data is entered in tae TDP. Should the
application program specify an operation on a segment, the
entire TDF {s 1lixkely to be changed. Segments that are
specified to be temporary do not cause creation of a TDF.
2. Atsributes

Lixe CORE, VGM partitions attributes according to
their application to either segments or primitives. Both
systems further divide the set of attributes according to
their changeability within the program, dynamic attridutes
being those that are subdbject to change by tae application

program after their 1{nitial d4eclaration and static

40

b
}
L
}

attridbutes bdeing those that are not. In CORE there are no
dynamic primitive attripbutes. VGM, howvever, does have a
group of primitive attridutes that it labels as “dynamic”.
Each member of the set of VGM dynamic primitive attributes
is also a member of the set of static primitive attridutes.

In VGM a static primitive attridbute is one that {is
set while a segment is open, and that once declared, applies
to all appropriate primitive invocations following it until
the segment is closed. Purther, for the lifetime of that
segment 1t will always apply to the set of primitives
created with 1it. A static primitive attribute cannot Dde
overridden by any other setting of that attribute anyvhere
in the program.

It no attridbutes applicadle to a particular
primitive are set within a segment then dynamic primitive
attridutes may de assigned outside tane segment. At a later
time in the proeram these attributes may be changed. When a
dynamic primitive attribute is set, the segments to which
the change applies must bdbe specified. If the application
prozram does not set either dynamic or static attributes for
some primitives then default vaiues are used. It is also
possidle for the user to specify his own Set of default
values,

The applicability of an attridute to a primitive at any
particular time in the proeram can de determined dy the rule

that user specified dynamic primitive attridutes always

41

P S P PR ——— -

override default values and static primitive attributes

alvays eoverride dynamic ones.

S. ZIhe Yiewing Surface

The flow of graphical information from a segmeant to
an output device is viewved dy VGM as a “stream . By
manipulating st reams, the user carries out the CORE
SELECT/DESELECT and ENABLE/DISABLE device operations. In VGM
when the user 1initializes a stream, he is picking a
particular device or group of devices for output. Devices
are assigned to a specific stream as part of VGM. A given
stream may bave more than one device assocliated with 1it.
Changing this assignment requires changes to tae VGM source
code itself. Stream initialization by the user’s subroutine
calls accomplisnes the necessary operating system functions
to 1link VGM and the appropriate drivers. It is valid for
more tham on® stream to be in use at any given time,

After initializing the required treams the user

then selects one or more of them to be used for display.

Once a stream {is selected, all subsequently generated
graphical output will de displayed on the devices assigned
E to that stream until it is deselected. There i{s no way to
% address 1individual devices on the same stream. Stream
! operations are not allowved vaile a segment, regardless of

type, is open.

42

E e s e 4 o oo an

4. Cgordipate Systems
¥GM uses an extra coordinate system in translating
grapaical data from world coordinates to tae terminal
Physical Device Coordipates (RDC). Betveen the
transformation from Werld Coerdinates to Normalized Device
Coordinates, VGM taxes clipped graphical data and maps 1t
onto a view plane in VYiey Plape Coordinates (VYPC:. The flow

of eraphical data {s shown in Figure 1.

‘ project project map to
clip on te _V_Eﬁvindov _LQ_H physical | _PDC
image viev plane to view device

port coordinates

Figure 1. Flowv of sraphical information through coordinate
systems

5. 1Iragsformations

In the CORE specification there is a static segment
attridute called IMAGE_TRANSPORMATION_TIPE this specifies a
maximum allowable 1level of ctransformation that can be
applied to a given retained segment. Tnere are four
allovabdle levels:

&. o tramsformation
b. 2D tramnslation only
¢. 2D translation, rotation and scale

4. 3D tramslation, rotatioa and scale.

43

This feature is not iacluded in VGM. The transtformations of
2D or 3D translation, rotation and scaling may bdbe applied to
any retained segment at any time in the program.
6. Text Mapipulagiops

In CORE, the manner in vhich text is displayed on a
device 1s conatrolled by, among otaers, tae attridutes
CEARPATH, CHARJUST, and CHARUP. The ¢first attridute
specifies one of four paths in the view plane: up, down,
rigat or left. As tane sequence of text is output CHARPATH
determines where in relation to the last character the next
is to bde positioned. The ftirst charactzr 1S alwvays
positioned at the CP. The CHARJUST attridute {is a
combination of directions, again in tne viev plane, which
indicate vhere, in relation to the CP, the rectangle defined
by the output text string is to de pilaced. Figure 2 gives

the possidle CP locationms.

lfft ce?ter rlegt
]]]
top f-%4 i
=1 ' ——
center t::L-l
of?f RNV AN v A
bottom H

Pigure 2. Possible position designations of CHARJUST

The text, depending upon the charjust values will be placed

in such a way that the CP will be at a Junction of a

44

WO R T e ——— .

vertical and a norizomtal line, A particular junction 1is
identified by its horizontal and vertical position labdels,
e.g. left, top = point a; “ceater, off" = point b. The
CHAROP attribpute {s a vector from ¢the origin in VWorla
Coordinates which specifies the “up” direction for the text.

These tharee CORE attridutes are aot specifically
implemented in VGM. Instead, their functionality is included
in the VGM attridutes CHARPLANE, CEARSIZE and CHARSPACE. The
text string orientation 1is defined by the CHARPLANE (a

vector in VWorld Coordinates originating at tne CP) and a
'string extent” vector. The string extemt vector is obtained
from the CHARSPACE and CHARSIZE attridutes. Fimure 3

illustrates the components of these two attribdbutes.

T

4

= CHEARSIZE x component
= CHARSIZE y component
CHARSPACE dx component
CEARSPACE dy component

M AR b e i

AOoWw
"

y Figure 3. CEARSIZE and CHARSPACE attribdute components

45

The string extent is the result of multiplying the vector
‘Y’ by the numder of characters. ‘Y’ originates at the CP.
The boxes containing the text characters will dbe in the
character plane with their lover left corner on the string
extent vector. A vide variety of directions the text may
followv stems from the fact that values for the attridute
compenents can be positive or negative.
7. Tisibility

In CORE tthere is a segment attribdute called
VISIBILI?TY which, 1f “on", meanms to display a specified
segment on the output device and, 1if "off", to remove 1t
from the screen. This capability also exists in VYGM where a
segment may bde POSTed to make it visidle or UNPOSTed to

remove it from the picture.

B. CORE FUNCTIONS NOT IMPLEMENTED BY VGM
The following 1ist of CORE functions are not implemented
F at all in VGM:
{ 1. pen attribdute
:a 2. marker_symbol attridbute
r 3. plek_td astridute
¢. naming of primitives
H 5. viev_up vector
{ _ 6. some inquiry routines
' 7. termipnate_, disabdble_, and enabdle_group routines

8. batch update

46

1 4 Aadnt o mi aut hun aun o SN o ng

9. escape mechanism

18, nighlignting
11. hierarchical level structure

12. acceptance of asynchronous input

c. FONCTIONS IMPLEMENTED BY VGM NOT IN CORE
SPECIFICATION
1. Primitives
The following primitives have deen added to VGM:

a., rectangle

b. are
c. polyegon
d. flood

The flood primitive 1is for use with bit mapped,
color devices. PFlood 1locates the CP and establishes tne
smallest area surrounding it bdounded dy arcs or lines. This
area {s then filled with a user specified color. If the CP
is pnot enclosed thea it 1s possible to flood the entire
display surface.

2. Agsributes

For terminals capadle of color graphics VGM adds a
BACKGROUND_COLOR attridute and an ADDITIVE_MODE attridute.
The former is self erplanatory. The latter determines hov a
declaration of any nev color attridbute is to be treated. If
ADDITIVE_MODE is “on~ them the bit pattern for the old color
1S losically ORed with the dit pattera for the new color,

47

R e e 28

-

and the resulting pattern becomes the value of the
attrivute. Otherwise the new color bit pattern simply
replaces the old one.

A BLINK attridute is implemented in VGM, waica s
intended to bYe one method of replacing the CORE system
HIGHLIGHTING attridbute wnicn has been left out.

3. Qsher Features

In VGM, there 1is a mechanism for modifying a
segment after it has bdeen closed. This is the EXTSEG feature
which effectively re—~opens tae segment and allows additional
graphical {information to be appended to the existing file.
The feature only allows addition of information and requires
that the CLOSEG command be issued arfter the addition s
complete.

If a graphics device that is curreatly in use has
bota input and output capabilities, VGM will, 1f directed by
the application program, " back transform input coordinates
from Physical Device Coordinates to World Coordinates. CORE
wvill only dack transform to Normalized Device Coordinates.

VGM’s error nandling and dedugging aids offer more
than is required by the CORE proposal. In VGM tae user has
the capabdility to specify tne maximum tolerabdle error
severity and the maximum tolerable number of errors. If
either maximum 1is exceeded, the program vill terminate., Waen

errors are detected, an entry is made into an error trace

48

file, 7This file 1s intended to de a dedugging tool. It
centains the error cede numder, a bdrief description of the
error, the relevaant parameters involved ia the error, the
name of the routine ia wvaich the error vas detected and the
result of the errer (corrected, ignored, default
substitution or program termination).

An option tnat GSPC left open to imp ementors wvas
hov to treat non—graphical data semt to a terminal bdeins
used for CORE graphnical output. Typically, tais might be
parent languase 1/0 in tke form of write statemeats or a
systeém message to thae particular terminal. In VGM there is a
SET_POSITION function which {dentifies an NDC position
specifying vaere nom-grapaical output 1S to appear on tae
screen, This output is affected by neither attridutes nor

the CP.

D. EQUIVALENT FUNCTIONS WITH DIFFERENT NAMES

Tais 1s tne simplest category of differences bdetwveen
CORE and VGM. Below 1s a short list showing equivalent
functions in CORE and VGM.

CORE name YGM name
charprecision charquality
detectadility pickadility
highlightine blink
vorld coordinate modelling transformation
transformation
49

Vi. THE ¥GM DEVICE DRIVER

The device driver is the connecting link between VYGM and
grapaics nardvare. JIts purpose is to take grapanical datca
from VGM via the designated COMMON storage area and
construct an instruction in a format compatidle with the
particular device it is writtean for. The software for thae

device driver is divided into 6 modules.

A. THE DEVICE CHARACTERISTICS TABLE

This tabdle is a COMMON bdblock of variables descriding the
characteristics of the graphics device for which the driver
is written. It is implemented as a BLOCK DATA source program
and 1s accessed by all of the executable modules of the
driver, It is initialized vhen the module is compiled and 1is

treated as read only by all of the routines refereacing

it.

_ B, THE STREAM INFPORMATION TABLE

g This 1is another COMMON block of data waich holds thae
5 current value settings for attridbutes for each stream. The
A_ tadle is wupdated by tne driver routines as the values are
ﬂ changed. Vaen the BLOCK DATA source file is compiled, the

default attridute values are set.

S0

i | . . | L L — - et i

- Ao B At SRl St Sl Bl Sl Rt i S i PR T gy TR ——_—— e - P aaprermIpa——

C. THE RUN TIMB INFORMATION TABLE

This tabdle, like the stream information tabdie is subdject
to continuous update DOy the device driver routines. It
contains the bduffer that holds the ianstruction to de sent to
the graphics device. Pointers required for keeping current
positions in the iastruction bdbuffer (CODBUF) are also in the
run time information table. In addition there are variabdles
for the {identification of the debug file and several nost

computer related values.

D. ROUTINBS BXBCUTING VGM PRIMITIVES (OnLIB1)

This module 1s executable code that 1is 1intermediate
dbetwveen VGM and the device instruction creating portion of
the driver. Its routines are invoked from VGM amd it in turn
calls routines to create the appropriate datea to fill
CODBOF. OulLIB1 1is graphics device independent bdut is nost
machine dependent. Contained in OnLIBl is the OnBXEC routine
that is the only executadble code ia tne driver softvare that

communicates with VGM,

E. DEVICE INDEPENDENT LIBRARY OF SHARABLE ROUTINE® (SKELIB)

This collection of routines 1S a set of device
independent operations that are optionally available to
OnLIB1. These routines perform operations like projection on

[a plane, clipping, image transformations, 1line style

generation etc. PFor highly capadle devices which perform

. these tasks themselves OnLIB1 would not reference SKELIB bdut

51

e adi BN S S S Tl Bt Mgt Riaak S il

instead cause the specific device 1instructions to be
generated. TFor devices that lack some of these features in

nardvare, SKELIB provides software sinulation.

P. DEVICE DEPENDENT ROOUTINES GENERATING INSTRUCTION CODES
(OnLIB2)

This set of sudbroutines fills the instruction bdurter
witn 1instructions and data specifically formatted <for tae
target device. Bach bdyte of CODBUF must be precisely set to
be compatibdble with the grapaics device. OnLlIB2 duilds the
full iastruction and, vhen complete, causes it to be seant to
the terminal. The communication with the terminal is done
vith MACRO routine QWRITE which uses the host computer’s 1/0

communication facilities and treats the graphics device as

an I/0 port.
All of the device drivers share tae stream information

table and SEKELIB. Bach driver installed with VGM howvever

must contain each of the other four modules. The inter-
connection of tane various device driver modules is spown in

Figure 4.

52

[’fﬁﬁ Ty - - Y WPy ey
3
H
¥

vGM

TREAM
INFORMATION SKEBLIB
TABLE
OnLIB1
RON TIMB “”/’~/ DEVICE
DATA CHARACTER-
ISITCS
<y
n

GRAPHICS
DEVICE

Figure 4. Interrelationship of Device Driver Modules

53

S - 4

VII. RESULIS AND SUGGESTIONS FOR FUTURE SIUDI

A. SOFTVARE

As stated in tae introduction, the purpose of tals
research was to lay the groundwork for a detailed study of
the CORE graphics system. A great deal of progress has been
made in thais effort. Tne VGM implementation of tae CORE
system is installed at the Naval Postgraduate School and is
capable of operating vwith the Textronix 4014 storage tube
display terminal. The system has passed the initial stages
of testing. Additionally, algoritams nave bdeen developed and
implemented on a limited bdasis for expanding the VGM
softvare to interface with tne Ramtek RM-9400 graphics
system. These portions of the project are discussed in
detail in Appendices A and B respectively.

A less taneibdle, bdut equally valuabdble result of this
study is the experience and insight gained with doth COREB
and the VGM implementation. Appendix C is one product of
this nev xnovledge. It is a brief tutorial on programmiag
vith Y¢M and s written specifically for the Naval
Postgraduate School {nstallation. The tutorial 1is not
intended ¢to Treplace the Bell Northera Research User’s
Manuals. It 1s meant to be used in conjunction with them and
delidberately avoids details which can easily de found Dby

referencing them,

54

RN A o i i i~ i

B. CORE BVALUATION
The CORE system is currently only a proposal and as such
it 1is 1intended for thorough Scrutiny by the eraphics
community. In researching tnis subject a number of 1issues
have bdeen identified which may provide a framework for an
evaluation of the system, This collection does not purport
to bde exnaustive dut is presented to provide a bdase for
future wvork.
1. Porgability
The prime issue to be evaluated is that of program
portadility. Tnis nas already been discussed in depth in the
GSPC proposal and summarized in this report in Chapter III.
In the course of this study some different perspectives on
the prodlem have come to light. It appears that there might
be nierarchical levels of portablility other than those
listed in the GSPC report. Graphics devices, computing
systems, operating systems and CORE implementations are all
variables in thais area. Another wvay of classifying the
portability of a program migat bde in terms of these
environmental factors. PFor example, Some programs may bde
portable from one device to amother as long as the computing
environment is not chansed. Others may survive a chanse of
computing machinery provided the operating systems are the
same. Conversely, chansgine operating systems rather than

computers migat be the defeating factor imn a program’s

85

portability. Yet another possibdbility is that different

implementations of CORE may be the reason for changes in @&
given prosram.

It wvould be difficult to develop furtaer the portadbility
issue from this point eof viev until a variety of
environments exist tor side by side comparisons. The
presentation of this perspective {s recorded aere so that
vaen such facilities are availadle its validity can bve
considered.

2. Implementation Effors

To gain videspread acceptance the CORE system must

bde easy to implement. Criteria are needed to measure the
difficulty of implementation. The following 1list presents
questions which may serve as possible evaluation mechanisms
for this:

a. Can the implementation bde reduced to Simply
following some kind of implementation
"aleoritam” ?

b. Does the design of the implementation
favor one type of device over another?

¢. Does the design of the implementation
favor one computing environment (either nardware
or operating system) over another?

4. VWnat tradeoffs in portability have to de made so

that implementation can be facilitated?

3. Device Capabllity
As is true of almost all standards in the computing

industry the CORE system does not take full advantage of the
nardvare capabdbility of many installations. It wvas never
intended to meet all pessidble meeds. Nonetheless a means of
assessing the loss in device capability under the CORE
system should be established. A guideline for determining
vaen the gains from using CORE are outwveigned dy the losses
from not utilizing the full power of the device would de a
niganly desirabdle tool, particularly for facilities
generating a vide range of graphics applications programs.
4. CORE Capabdility

Pernaps tae most difficult and controversial
question in the evaluation of CORE is whether its
capabilitcies really are sufficient for most grapalcs
programmers. Further, how adaptable to future needs will the
system bde? Is bardwvare technology likely to progress to a
point wvhere CORE is no longer adequate as a standard? 1Is it
likely that computer grapajics will expand into areas that
CORE wvas never intended to serve? Certainly none of these
issues wvwill ©bde resolved easily. Each question {an 1tself
could be a topic for detatiled analysis. They are presented
pere just to suggest areas for further study.
C. OUTLINE OF CONTINUING DEVELOPMENT OF THE NPS SYSTEM

In the course of this study some ideas have been

3 formulated for a methodolomy to direct continuine wvork on

57

the project. This is only one wvorker’s point of view and it
should serve as a guide rather than an adbsolute to follow=-on
vorkers.
1. ¥GM

The first order of dusiness snould be to modify tae
Bell Northern Researcn test routine, AKPAK, so that the full
range of VGM functiomality can be verified. This would
entail construction of appropriate overlays for tne test
package so that the large amount of odbject code can be
accomodated on the limited PDP-11/50 memory. Once tals 1is
accomplished, AKPAK can serve as a bdeachmark proeram for
testing additional drivers that are added to VGM. Using
AEPAL as a bdenchmark should also aid in studying other
portability issues.

2. Device Drivers
The pattern for vriting tne code tnat interfaces the

device independent portiou of a software driver and tﬁe RM-
9400 has been estadvlished. PFurther, it nas been partially
[implemented and tested. The next step is to complete the
; remaining subdbroutines in the O04LIB2 (device dependent
§ routines) module according to the algorithms provided in
- Appendix B. Once a nev O4LIB2 nas bdeen duilt it can bde
tncorporated into YGM and tested, first as a Separate entity
using the provided DDTEST program and then as a fully
integrated part of YGM usine AKPAK.

58

By no means would this complete work on the Ramtek
driver. After the O4LIB2 work is completed the driver would
still fall far short of taking full advantage of the pover
of the RM=9400. A topic of study all its own would dbe the
modification of the "device~independent” sections of the
driver code to put the sopaisticated features of the RM-9400
into use.

An ancillary project would be to develop yet another
driver for a2 nev graphics device. The obdject of this study
vould not be to merely expand the capabilities of the
existing YuM system. What it is hoped would emerge from such
research {S a pattern for writing device drivers. Such a
formula, if {t exists, would dbe a very useful tool for
further expansion of VGM without the necessity of re-
learning already estadblished techniques.

3. Porzabdility

¥ith a fully operational ¥GM system and a variety of
devices available for use, portabdility testing can Ddegin.
The suggestion is to direct the work along lines mentioned

earlier 1{n this chapter in section B. After varyine the

» graphics devices and studying the system bdbehavior over a
. variety of them, vork should proceed to studyine proaram
- behavior under changes in the computing eanvironment. Otaner
operatine systems, other computers, and other CORE

l implementations are availavle for such researca. Tais

59

variety of environments in a sinele location would provide

an excellent

standard.

test bded for thorough evaluation of the CORE

APPENDIX A. IMPLEMENTATION OF ¥GM AT NAVAL POSTGRADUATE
S¢HOOL

The aim of this portion of the project was to gain
insizht {into the operation of VGM and to install a working
version of it on the Naval Postgraduate Schnool’s grapnics
facility. Bell Northern Research (BNR) of Ottawa, Canada
suppliied tane school with a tape containing tae source code
for YGM, version 1.1. and two device drivers. One driver was
vritten for a (Charomatics color grapaics, raster scan
terminal and the other for a Textronix 401X storage tubde
terminal. A Textronir 4014 was readily availabdle at Naval
Postgraduate School and, being a simpler device, was deemed
the best choice for installine and testing VGM.

On the same tape as the ¥GM and device driver softwvare
vere several command files to aid in installine the system.
These command files 4id such things as complle the source
modules, 1install livraries amd dbuild tasks. Their inclusion
vas intended to save some user time and effort and to aelp
avoiid erromeous or incomplete system commands that might
arise durine any of the 4{initial sStages of softwvare
installation.

The plan for implementation was the following:

A. Compile all of tne source modules making up VGM.

61

B. Convert the YGM object code into a FORTRAN libdrary under
RSX.

C. Compile all of the source modules making up the Tektroanix
device driver.

D. Link tne odject code from the device driver compilations
into a single task called O2DRIV.

B. Test the driver separately from VGM by using a test
routine supplied by Bell Northern Research.

F. 1Install O2DRIV under RSX as a task availavle for
concurrenxt use.

@. Test ¥GM itself using the Bell Northnern Research supplied
test sraphics prosram AKPAK.

Before any of the installation could degin, tae softwvare
on the tape had to bde made easily accessible. This was done
dy copying it onto the RSX on-line disk storage. A copy of
the BNR softvare may be found under directory DPO:(201,211].
This copy of the source code is intended to remain unedited.
Any chanees %o the code during VGM installation were made bdy
transferring original copies to a vworking directory and
editing there. To generate obdject code the modules necessary
for VGM and the device driver compilation were PIPed to
directory DP3:(201,210]). Once the source code vas available,
the command file VGMCOM.CMD wvas executed. VGMCOM.CMD nad to
be modified somewnat to make it compatidle with the TF4P

compiler. The BNR softvare vas writtean under an older PDP

(4) ol AN I A S

LAt AT I i it Sy R At B Ateth 2 T e —"r P - -

version of FORTRAN so the compiler commands had to be
ad justed accordingly.

In all, VGM contains 12 output modules and 7 input
modules. Bacha module 1is, {in turn, made up of several
sudbroutines srouped dy the particular function they perform.
For example, the output module INISTR (INItialize STRing -~
named for the first of the compoment subroutines) eontains
16 separate subdroutines all naving to do with either stream
or sSesment manipulations. There are also two Dbdlock data
modules and a test prosram.

Once object code wvas generated for all of tne VGM
routines, command file YGMLIB.CMD wvas executed under the RSX
LIBRARY utility, creating & lidrary of all tane executable
routianes concerned with faput aand output.

The compilation process was repeated for tae source code
modules for the Tektronix driver. Command file O02DCOM.CMD
accomplished this. The device driver modules consist of two
"libraries” which manipulate the device independent
information coming from YGM. A taird lidrary, O2LIB2, does
the actual creation of iastructions to the Textronix. 02LIB2
is the portion of tae device driver that lianks VGM and the
terminal. There are also some bdlock data modules waich set
up communication areas detveen the device driver and VGM and
also provide specific device parameters wvhere needed to bdoth
¥GM and the device—independent portions of the driver. Two

MACRO modules are included to handle input and output

63

—v POV T

St Auand Laes B S AN Suten DiaP Redt- STt

commnication between the device and the operatineg system.
The rest of the driver related modules concern themselves
vith interfacine the device independent parts of the driver
and ¥YGM itself.

Like YGM, the object code for the device driver modules
are built into a lidrary under RSX oy file O2DLIB.CMD. This
library hovever {s only a temporary holding area for the
driver odject code., It is referenced by tne rile O2DRIV.CMD
and the object modules are linked together into a single
task called O2DRIV.

With VGM existing as an object lidrary and O2DRIV as an
individual task the preliminary vork is done. Testine 1is
accomplished in two stages. The first 1is testing the
functionality of the device driver independent of VGM. The
test program, O2TEST, was provided by Bell Northnernm Research
and wvas compiled with the rest of the driver routines and
block data programs. The file O2TEBST.CMD links the test
proeram, the driver 1lidrary, and the bdlock data 1into a
single executabdle task called TEETEST. TEKTEST exercises tae
driver’s functionmality fully and is availabdle for use in
directory DP3:(201,219).

After the 4river vas satisfactorily tested alone, tae
task O2DRIY was INSTALLed under RSX. The INSTALL feature is
an RSX utility thnat activates a specified task and makes it

availladle for invocation from another active task.,

64

[ﬁf* T ~y
i
L

The next step is duilding the VGM test task. The test
routine, ALPAK, 1s also supplied by BNR and is intended to

thoroughly test VGM and any selected device driver. The
command file provided to bduild tae AKPAK task is VGMTKB.CMD.
The initial attempts to build the test program resulted in a
Task Builder diagnostic 1indicating thnat not enouga
contiguous disk space was available for the AKPAK task. This
vas partly a result of the fact that AKPAK and tne
associated VGM lidbrary routines require a very large bdlock
of disk storage. This 1is also 1indicative of another
potential problem. Since the AKPAK test is such a large one
it is not likely to fit into tae available core memory. It
will most likely require construction of overlays to run on
the limited memory resources of the PDP-11/50 at NPS.

It was decided that at least for the initial ophase of
study to follow a sSomewhat shorter and simpler testine path.
Rather than Dbdecome ianvolved in constructing overlays and
possible changes in the structure of AKPAL, a more limited

test program would de written. Since one goal of this part

of the work wvas to zet an operational VGM system {t was

deciied to at least ensure the proper ianterfacing Ddetween

the user program, VGM and O02DRIV.

Y Tovard this end, a much simplified test proaram wvas
written, called VGMTST. It was linked wita VGM and the
necessary bdlock data routines by frile VIST.CMD. VGMIST

Pp——p—

y exercised several of the 2-dimensional drawing, move, and

65

S

PP — p
.ee

PEPP—

™ { L AMA anao

v ’v,vtﬁv v

v - rTe L

marger primitives, the low quality text capabdility and the
SET_POSITION feature. In addition, some of the device and
segment control functions were also tested since their use
1s essential for any VGM operation.

The execution of VGMTST was quite sSuccessful. The
dravings on the Tektromix screeam appeared as expected. The
task is availadle for use under directory DP3:([2¢1,212]. To
use the test routine, turn ob the Textromix 4614 and log in
under BSX by the standard procedure. BEnter the proper
directory by typing

SET /UIC = [201,210)
after tne RSX prompt (>). Next, when tne prompt appears
issue the commands
>INS O2DRIV
DRON YGMTST
The test program will execute and tne resultant grapaics

vill appear on the screen,

APPENDIX B. CONSTRUCTION QOF & DEVICE DRIVER FOR THE RAMIEX
AM=2400

A. DEVICE DRIVERS

Bell Northern Research’s device drivers are identified
by unique integer designations, the particular integer being
incorporated into tne driver name and the names of tne
modules that comprise them. The modules, and subroutines in
them, specific to the Caromatics driver all bdegin with an
01~ {dentifier, for example, O1LIB2 or O1MOVE. The Tektronix
4014 softvare is device driver #2, taus its names are all
prefixed with an 02-, Also provided is a driver which shares
the Tektronix 4814 code bdbut is to be used with the Tektronix
4019. This uses the 03~ prefix. Only the O3EXEC (the
interface vith the VGM softvare) routine has tane prefix, the
rest of the driver uses the Tektronix 4914 code. For the
routines to be written as part of tais study, the C4- prefix
vas selected, being the next in the sequence.

The ¢target device in this portion of the study was the
Ramtek RM-9404, a very powerful and sophisticated color
raster scan graphics device. Adaptation of a similar driver
seemed the best course of action. The Chromatics grapaics
terminal is also a color, raster device though not nearly as
advanced as the RM-940€. Nonetheless its driver is readily

availabdle and 1is already adapted to the PDP-11/RSX

67

environment. It provides a good sStarting point for

developing the Ramtek software.

The 1initial intent in the construction of a device

driver for the RM-9400 was to leave tne C(Chromatics driver
intact as far as possible., Tne module SKELIB, waich contains

the device independent hardware feature simulation routines,

was left uncnanged. The Stream Characteristics Table nad to

Vg T

be modified only slightly to include the new device. The Run
Time Information Tabdle for the Ramtek is simply a copy of

the one provided for the Chromatics driver. The same is true

TP

for O4LIBl1 with the exception of the O4EXEC routine.
Modifications to O4EXEC were very slight. Inclusion of the

nevy O4EXBC routine did necessitate changes to the VGM
software in the INISTR and SELSTR (SBLect STRing) modules.

The bdulk of the work in writing the new driver will be

T ——— e o
i p™ A

in developine a new O4LIB2. C(Creation of a new Device
Characteristics Tadble is also important. The latter requires
an item by 1item reviewing of the tadble variadvles and

providine the appropriate values as they pertain to the RM-

T T

9400, Details of what entries should bde made are in the BNR

"Skeleton Driver Installationm Manual”. In this study very

1ittle of the RM-9400¥°s capabilities were exercised and the

importance of the Device Characteristics Tadle was secondary

ke = 4 - Ty

to getting a rudimentary system in operation. As the device
driver develops into a more refined torm and 1incorporates

more of the RM-94P@°s capabdilities, the Device

68

Bt I e AR L A o et e

,
4
r

v T

Characteristics Table should be revieved and updated

continuously.

B. RAMTEK RM-9400 INSTROCTION FORMAT

Before writing any of the routines, a knowledge of the
format of an RM-9489 instruction is required. The RM=54p0
instruction 1s a variable length bdbutfer of 16 bdit wordis. The
first 8 bdits of the first vord contain the code for the
function the device is to execute. For exa ple, an operation
code of P6H (Ramtekr mnemonic INIT) initializes the device; a
code of 35H (Write Vector, Onlinked -- mnemonic WVJ) is a
line draving f{nstruction. The operation code determines how
much more of the instruction dbuffer the RM-940¢ needs. For a
very simple fnstruction like INIT, once the operation code
is read, the rest of the duffer is ignored. For something
like a 1line drawving, however, the device will require a
number of extra words of informatlion bdefore it can execute
the instruction. The extra vords will, as a minimum, have
to indicate the end points of the line, and may include the
foreground and backeround colors as wvell as the line style
and thickness. Depending on tne operation, some of tae
additional instruction words are essential and some are
optional. 1In most cases, if a piece of data is required aand
is not specified, a default value will bde used., The
architecture of the RM-940@ is such that it 1s possibdle for

the user to specify the default parameters values.

69

The presence of additional words of information s
indicated to the Ramtek by flag bits. The last 8 bits of the
first vord are the primary set of flags. Only three of tnese
are involved in extendine the size of the instruction. The
five nigh order bits of the low byte modify the execution of
the operation code as indicated in the following tabdle.

bits 6 & 7 code for the mode of addressing
refresh memory

bit 5 selects additive mode of
text output

bit 4 reverses foreground and
background colors

bit 3 sets device to process
bytes in a word in reverse order

It is the tnree 1lowest bits that 1indicate hov many
additional vords of data will de in the instruction. Bits 2
and 1 each indicate whetber a particular “"operand flae word"
will bde in the iastruction duffer.

If bit 1 in set, ~operand flag word #1° (OF1) will
immediately follov tne word containing the operation code
and the primary flases. OF1 i{s another set of flags each of
which corresponds to additional pieces of information in tne
instruction. The settine of one of the 16 bdits 1ia OF1 means
that one or more words of data will follow. The order of the
additional data will correspond to the bdits of OF1l, from
lowest to highest.

A sample bdit pattern might bde

9000 0001 0000 0810 (2102H)

7¢

This would indicate that two additional pieces of data (one
for each "1" bit) are in the instruction buffer <following
OF1. In tnis case thne two bits that are set mean taat
"foreground” data and "line dimension” data are present
(bits 1 and 8 respectively). Tne foreground information 1is
simply an integer index to a color tadle in Ramtek refresh
memory and only requires a single word of storage. The line
dimensioning 1information 1s more complex consisting of a
pattern code apd a repeat code (interpretation of these
codes is unot important to the current discussion) and
requires two words. These two words will follow tne
foreground word in the duffer. The code that the RM=-94¢0

would execute is saown symbdolically in Figure 5.

it 15 ‘ it @

op code | flags
]
operand flag word 1

foreground color index |

line code word 1

line code word 2

Figure 5. Instruction Buffer with OF1 and Associated

Parameters

Bit 2 of the primary flags indicates the presence or

absence of “operand flaz vord 2" (OF2). If flag bvit 2 1is set

71

RS . SN iaiaminsfinnad - PR SR U S o

T IV YTy YTYTYY

Ty

v v

A4

TSV TPOr VoYY

-

then OF2 will immediately follow OF1., If flag bdbit 2 is set
and flag bdbit 1 is not, taen the wvord immediately follovwing
the operation code word is OF2., OF2 performs exactly the
same task as OF1 except that only its six least significant
bits are used.

Flaz bdit @ in the operation code word indicates that
text or numeric data will follow OF1, OF2 and their
associated parameters 1if present. The first word of tais
data vill always bde an 1integer inpndicating hnow many
additional bdytes of data will come after {t.

To 1illustrate, suppose the user wants to draw a line
from the pixel at screen coordinates 106,100 to the ome at
500,500. He further wvant its color to be tnat of #4 in the
color tadle in refresn memory and his line dimension code {s
given by the vords 91018 and ¢003H. The instruction buffer
would de that shown in figure 6.

To a roush approximation the operation codesS for RM-940¢
instructions correspond to VGM primitive and device control
functions. Similarly, the parameters referenced by the
operand (flag vwords correspond to attridute values. While
this is not alvays the case it provides a #oo0d rule of thumbd
for the initial development of a device driver. Those VGM
calls executing a primitive or coatrol fuanction will cause
an operation code to be placed in the 1iastruction Dduffer,
Those settine an attridbute will cause the settine of flazs

and loading of appropriate parameter values,

72

KRR 0 oo

Y

™ |

ey Ty

LR D
' [

PR

L A S G St asncth . 4 e

C. SBTTING ATTRIBUTES
1. Storage Rseuirements

Uhen an attridbute is set it does

have to take effect immediately.

necessarily

Therefore memory locations

must be available to store the values of attribute settings

until an appropriate operation code using them

Figure 6. Ianstruction bduffer for line with specified

9011 0101

opcode flags

0000 0011

|
ori
0000 0001 2000 0010

color tabdle index
9000 0000 0000 0100

line code wvord 1
0000 0001 0000 0001

1ine code wvord 2
9000 000¢ 0003 0011

data lensth word
0000 0000 9000 1000

X start coordinate
2000 0000 9110 0100

y start coordinate
0000 0000 9110 0100

r end coordinate
9000 0001 1111 9100

Yy end coordinate
0000 @001 1111 01400

and style

73

loaded

color

A= Pladii-aah it i S b T T R Ty ———m—— TN T ———

iato the instruction buffer. The RM-9400 nas tae capacity
for setting 22 different parameters, each one corresponding
to a bit in one of the operand flag words (16 in OF1 and 6
in OF2). Not all of the parameters that are entered into the
Ramtek {instruction are limited to a single word. Although
some parameters do require only one word there are others
that need 2 or 4, and in one case 12, vords of storage. The
total storage required for tahe 22 parameter settings 1s 47
vords. A global, integer array of 47 elements named PARAM is
set up as part of a BLOCK DATA program to store these values
as they are set. Two additional "read only” arrays are also
part of tnat BLOCK DATA subdroutine. These aid in referencing
the PARAM array. Integer array PRMPTR of lensta 22 contains
indices to the starting location in PARAM wnere a particular
parameter’s values are saved. Bach eatry in PRMPTR
corresponds to A& flag in one of the operand flag words.
Elements 1 tarouzh 16 of PRMPTR contain pointers to the data
associated wvith bdits @ tarough 15 of OF1. Elements 17
through 22 do the same for bits @ through 5 of OF2. The
second array, PRMSIZ, {s a parallel array to PRMPTR. Each of
1ts integer values is the size, 1in words, of tae particular
parameter pointed to by the corresponding element in PRMPTR.
The values of PRMPTR and PRMSIZ are fixed at compile time
and remain unchanged throughout the prosram. PARAM {s

fnitially set to all zero entries and gets updated as the

various attridute values are assigned.

74

LN SN o a0 o i an aich, AR oreay s> ogun

—) DI Sra e mnasen A

There are also two logical 3.rays and taree logical
variables involved in keeping track of attriobute settings.
The elements of the logical arrays correspond to the bits of
OF1 and 0¥2. They are named OF1ARR and OF2ARR. If a dit in
either OF1 or OF2 is to be set dy a particular subdroutine
call then the element in OP1ARR or OF2ARR tnat corresponds
vill bave a FORTRAN value of .TRUE.. The losical variabdbles
correspond to the lowest taree bits of tne primary fiag set
of the Ramtek instruction operation code word. For bdit 2
there is OF2FL, for dit 1 there is OF1FL aand for bdit @ tanere
is DFFL. All of the losical variadles, includine the arrays
are initialized to .FALSE..

Finally, the three wvords which actually control the
instruction Dduffer size must dbe gkept: OF1, OF2, and DLV
(data leneth word). These are declared as inteeer variables
in tne BLOCK DATA subdroutine and initialized to zero.

2. Value Storage Operations

Vhen a subroutine that sets an attridbute is called,
several operations must take place, not necessarily in any
particular order. One of the required eveats is that the
attribute values must de entered into the proper locationn in
PARAM. This is done in a special sudroutine called 04LOAD.
Its essential part 1is & DO loop wnicha fills the array
starting at the location indicated dy an element of PRMPTR
and filling the npumder of wvords indicated by the

corresponding PRMSIZ value. Along with setting the parameter

75

values a flag markine the fact that they are to be used
must also be set in either OF1ARR or OF2ARR. Also, the flag
indicatinge either OF1 or OP2, must be set, So either OF1FL
or OF2FL bdecomes .TRUE..
Tae code for any subdbroutine that sets amp atiribute
can be vwritten accordiane to the followviag algorithm:
input: parameter values
beein attribute setting subdbroutine
set OFP1FL or OF2FL
if flag ian OF1ARR or OF2ARR not set then
set OF1ARR or OP2ARR flag
set flag in OF1 or OF2 by adding proper power of
tvo
end if
store parameter values in PARAM
end
Tvo subdbroutines have bdeen vwritten that carry out tais
process, They are O4COLR and O4BCOL. The source code for
them is found under RSX on the PDP-11/5¢ 1in directory
DP3:(301,1). The subroutine O04LOAD is also found in tais
directory.
3. Pilling tne Ipstruction Buffer
The critical sudroutine in module O4LIB2 i{s COPCOD.
This is the one that controls the filling of the
iastruction. It 1is 4{invoked by the primitive and control
sudbroutines in 04LIB2. The routines that call COPCOD pass as
a parameter an index to an array containine the Ramrtek
operation codes. These operation codes are set into the
array OPCODE at compile time. They are designed to de the

Ramtek equivalent of the intended VGM function. COPCOD gets

78

< the actual code from the array OPCODE. The operation code

and the primary flags are tnen combiped into the first word

of the instruction duffer, COPCOD also causes the operand
flagwords (OF1 and OF2), their parameter values and the data
leagtn wvord to be loaded if any of them are required. The
text or numeric data is loaded by the primitive or control
routine itsel?,

The following algorithm shows the operation of
COPCOD. The code can be found in directory DP3:(301,1]:

iaput: OPCODE index

begin COPCOD
get actual operation code from array OPCODE
i1f OF1FL = true then set flag bit 1
if OF2FL = true then set flae bit 2
shife operation code to upper bdyte of first

tastruction vord (multiply by 256)

add flagvord to shifted operation code
load operation code word into bduffer
load OF1 and/or OF2 as indicated by flags
load parameters in proper order from PARAM
load data length vord if necessary

eand

AS wvith attridbute setting, all subroutines which are

primitive functions can bde patterned after a single

algoritam. Control functions cam follow tnis same Dpattera

VT

though they typically will not require data values to be

W

3 placed ip tne iastruction bduffer. The algoritnm is:

3 input data values

L begin fuaction execution

{ set DFPL (data flag) if appropriate

{ set dit O of flaes

. set data lengtn word (DLW) to number of dytes of data
call COPCOD -- pass OPCODE index

load data values

s execute ianstruction

end

77

L AR S at a4 h e

A numbder of routines nave been written following

this algoritam. They include:

04DOT place a point at specified coordinates
O4MOVE change curreat cursor position

O4DRAVW drav a line bdetveen two specified points
04SSTR output a text string

O4RSET erase the screen.

All canrn bde tound in directory DP3:[3@1,1]. It snoula be
noted that the routine 04STR, which bduilds an {instruction
for text output, inserts an extra step detore loading the
data. O4STR receives its text data in an integer array with
one alphanumeric character per element. The Ramtek requires
textual data output to be formatted to omne character per
byte. Therefore O4STR must maxe this conversion bdefore
loading the data into the bduffer.
¢. Testing

As the routines wvere developed tney vere tested for
operadbility. The testing was at a very low level sSimply
checkinge that the instruction duffer was bdelinsg properly
constructed and traansmitted to the RM-9400. All of the
routines developed in tais portion of the study have been
successfully checked in this manner. The test programs are
modularized, each bdeing called dy a master routine called
DOMTST. The individual test routines are named LINTST (LINe
draving TeST), PTTST (Poin? placement TeST), TITST (TeXt

78

output TeST) and COLTST (COLor selection TeST). Their source
code can be found in directory DP3:(301,1].

All of the routines ieveloped were originally part
of the O1LIB2 module of the Caromatics driver, A copy of the
orieinal software is available in iirectory DP3:[5,3). After
modifying the names to conform with the selection of #4 as
the identifier for the nev devire driver each subroutine was
removed from the module and treated as a separate entity.
This was done for ease of editing and troubleshooting. To
support this process command files were created to
facilitate repetitive compilation and task building
operations. The <files COMP.CMD and TCOMP.CMD in directory
DP3:([301,1] cause the compilation of all the driver software
and all the test software, respectively. File DUM.CMD builds
tae test task DUMTST.TSK, by linking tae modified
subroutines, the BLOCK DATA programs and the test routines.

Among the test routines some snort pieces of code
rave dbeen included to accomodate testing. The important ones
are RMINIT, which iaserts the color table ianto the Ramtek
refresh memory, and BIGTXT, which causes text output to bde

priated in a lareer than normal format for viewiag ease,

79

O Al LA R e R Ak §

- T

APPENDIX C. PROGRAMMING WITH VGM

Grapalcs programmine using VGM {s actually a highly
specialized use of FORTRAN. Because of tnis, all tne rules
of PDP-11 FORTRAN apply as well as those of the graphics
system, When using VGM the prosrammer eenerates a main

program which references a lidrary of graphaics subroutines.

A. SBETUP
VGM is initialized dy three essential statements. First

CALL INIT
(INITialize)

starts the VGM session. It sets the variadles required by
both the operating system and YGM 4tself. Thne routine
ensures that each time VGM is invoked it is in the same
starting state, Immediately following tatis,

CALL INISTR(n)
(INItialize STReam)

activates the device dependent driver softwvare for stream
‘n”. It sets device parameters and uses the operating system
process Dhandling capabdilities to allow application proeram
access to tne particular device or devices on the stream.
Lastly,

CALL SBLSTR (n1)
(SBLect STReam)

directs all grapaics output to stream ‘n1°’. 1f anotner CALL

SBLSTR (n2) 1instruction 1is encountered before a CALL

T Y

DELSTR(n1) instruction, the grapnics output will go to both
streams nl and n2. It is mandatory that each stream bde
prepared by a CALL INISTR(n) before it is selected by a CALL
SELSTR (n).

B. ENVIRONMENT SPECIFICATION
1. The Coordinate System

In VGM, the user detines his esraphical world 1in
arbditrarily selected "world coordinmates”. These coordinates
are the medium tarough which ne communicates positional data
to the system. YGM processes those world coordinates through
a series of viewing transformations and eventually derives
"normalized device coordinates” (NDC). The NDC’s are real
values ranging from @.¢ to 1.0 and are mapped onto the
paysical device selected for viewing. A picture in NDC is
independent of any particular graphics device.

For VGM to properly execute the string of required
coordinate transformations, the Normalized Device Coordinate
System must be specified before World Coordinates. With

CALL NDCSPC (nstrm, width, neigntg)
(Normalized Device Coordinate SPeCification)

a rectangular portion of the view surfaces of terminals on
stream ‘nstrm’ 1s defined. °¥idth’ and ‘height’ are real
numbers ranging from 0.9 to 1.0. They indicate tne relative
part of that dimension of the view surface that is to bde
used, One or the otner must be 1.0. Therefore, ei-ner tane

full screen width or the full screen height will bde used.

81

L gn o o e o S <

The remaininog dimension will be proportionately adjusted. A
statement such as
CALL NDCSPC (1,1.0,.75)
will set up the devices on stream #1 so that a viewing area
using the full width of the Screem 1S made availatle. The
heignt will bde 3/4 as large as the width if that much 1is
available. If a dimension specitication is too laree, the
naximum avallable is used. The NDCSPC command normally 1is
usedl only once 2or each stream.
2. The View Surface

After setting the total viewing area availabdle,
"viewports” are assizned to the streams by

CALL VIEVW (nstrm, xmin, ymin, xmax, ymax)
A viewport is a portion of the available surrace (NDC space)
that will be used, up to, but not exceeding, the total
declared surface. ‘Xmin’, “ymin’, “xzmax’, and ‘ymax’ are NDC
values and must dbe within tae bounds specified in the NDCSPC
call. A viewport declaration stays in effect until a new one
i1s 4declared. The viewport may be cnanged as oftem as tae
user desires in the main program.

The “window” is the counterpart of the viewport i{n
the world coordinate system and is set by

CALL WINDOW (nstrm, xmin, ymin, xmax, ymax)
The parameter values except for ‘astrm” are in VWorld
Coordinates and are arditrarily selected by the user to meet

his requirements for clippins and {mage transformations.

82

T v o T e . r - . e g w

This 1s the part of World Coordinates that the picture s

created in. The window is the work area of the prozrammer.
For display, the <clipped and transformed images 4in the
vindow are mapped to the NDC space defined by the viewport.
3. Backzround Color
On color capable devices the last environment
setting operation is to define the bdackground with

CALL BCEKCOL(ival)
(BaCKkeround COLor)

to set the attribute and
CALL ERASE
to dring it up on the screen.

Tne current version of VGM allows selection of one
of only eight colors available. Selection is done by
specifyine an integer value between ¢ and 7 for “ival’. The
default color table contains black, blue, green, cyan, red,

magenta, yellow, and wnite, in tnat order.

C. CREATING A PICTURE

Witnh the devices initialized, and the environment set,
the next step is to open a segment. To do this the type of
the intended Sesment must first be declared by

CALL SEGTYP (itype)
(SEGment TYPe).

PP

- An ‘itype’ value of 1 indicates tmat all sudsequently
E . created segments will dbe non-retained. A value of 2 means

5 tnat tney will be retained.

Fy

After tne type nas been estadliisned, the segmeat s
opened with

CALL CRESBEG (nseemt)
(CREate SEGment).

‘Nsegmt’ s an integer value that uniquely 1identifies the
particular segmnent. Once tnhe segment is open, the user
creates his image Dby invoking primitives and assienine
attridbutes. Any primitive attribute values declared before
closing the segment are static. Declaration of sezment
attridutes 1is not allowed wnhile a segment is open. As each
primitive {s executed {tS contribution to the total {image
will ©be displayed. Wnen tne particular image is completed,
the

CALL CLOSEG
(CLOse SEGment)

instruction is issued. It is not necessary to specifically
identify tne segment deing closed, since only one 1s allowed
to be open at any given time.

After clocsing a segment, a number of options are open to
the user. He may terminate the session by normal FORTRAN
procedures or ne may continue on and manipulate devices,
streams and segments. He may alter dynamic attribdbutes and
create additional segments subject to the limitations of VGM
and PORTRAN.

D. BXIEBCUTING THE PROGRAM
After creating the source code for a VGM program it

should be 1independently compiled 4into an obdbject (file.

24

Incorporatine the user file and the VGM library into an
executable task requires tne following command sequence to
pe issued to the RSX Task Builder (for purposes of the
example, MAIN 1s selected to be tne name of tne user’s
program):
TEB> MAIN/CP/FP,VGM/-SP=VGMLY/MP

ASG = SY: 1

ASG = SY: 2

ASG = ST: &

ASG = TI: 5

ACTFIL = 3

MAXBUF = 8¢

FMTBUF = 80

//
Before executinz the task (now stored in file MAIN.TSK) 4t
is necessary to INSTALL the device drivers. For each stream
that will be used by MAIN.TSK. The MCR command to RSX {is

>INS OnDRIV
where ‘n° is the inteeer identifier for the particular
driver, The command
DRON MAIN

vill execute the user’s graphics program.

85

™

MR AR 2R RA R

BIBLIOGRAPHY

Micaener, J.C., and Poley, J.D., “"Some Major Issues in tne
Desizn of the CORB Grapnics System”, Computing Surveys, 19,
4, pp. 389 - 443, (Dec 1978).

Michener, J.C., and VanDam, A., "A Functional Overview of

tae CORE System » Computing Syrveys, 10, 4, pp. 381 - 387,
(Dec 1978).

Newman, V., and VanDam, 4., "Recent Bfforts Toward Graphics

Standardization”, Computing Surveys., 106, 4, pp. 365 - 384,
(Dec 1978).

Nevman, ¥.M., and Sproull, R.F., Pripciple or Interactive
Computer Grapnics, McGraw-Hill, Newv York, Nev York, 1979.

"Status Report of tne Grapaics Stapdards Planning Committee
of ACM/SIGGRAPH™, Computer Graphics, 11, 3 (Fall 1977).

"Status Report of tae GSPC™, Computer Grapnics, 13, 3
(Auzust 1979).

Bell Nortaern Researca, Virtual Grapaigcs Macaipe: U;g_-g

Reference Mapual; Ipstallatiol Guidei Skeleton Driver
Installatiog Guide, Ottawa, Canada, April 1981.

Digital BEquipment Corporation, PDP=-11 TFORTRAN Langauge

Referepnce Mapual, Maynard, Mass., 1975,

Ramtek Corporation, RM-9400 Serjes Graphics Dignlgz System,
Software Reference Manual, , Santa Clara, Ca. 1979

86

INITIAL DISTRIBUTION LISI

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Livrary, Code 9142 2
Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate Scnool
Monterey, California 93949

4. Professor Georze A. Rahe, Code 52Ra 1

Department of Computer Science
Naval Posgraduate School

Monterey, California 939449

5. Ltv. Patrick M., Comi, USN 1
3938 Via de la Bandola
San Ysidro, California 92072

